

Distributed Computing Grid Experiences in CMS Data Challenge

A. Fanfani

Dept. of Physics and INFN, Bologna

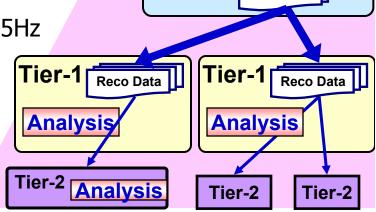
on behalf of the CMS Collaboration

CMS Data Challenge 2004

Generation

Simulation

Digitization


25H

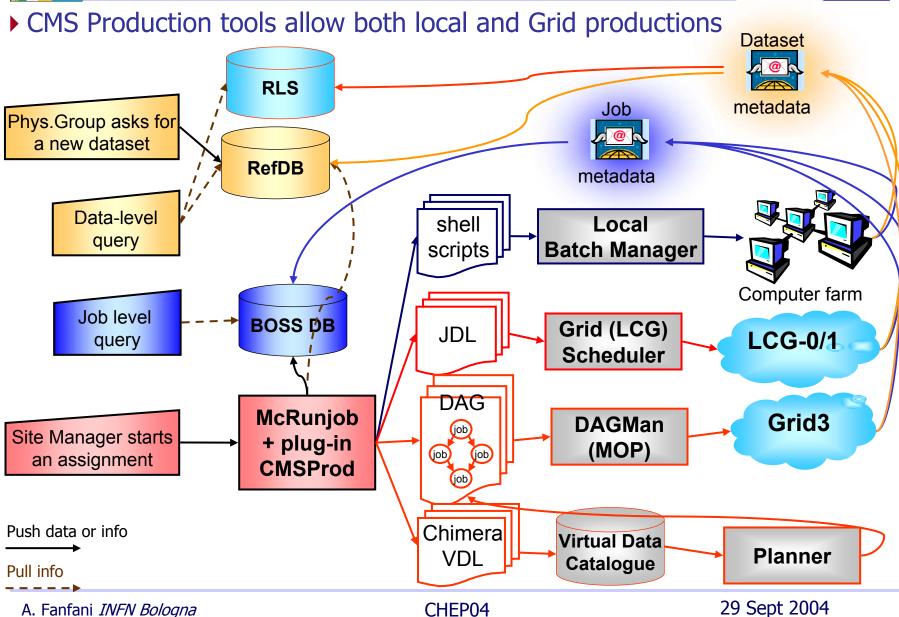
Reconstruction

Reco Data

Planned to reach a complexity scale equal to about 25% of that foreseen for LHC initial running

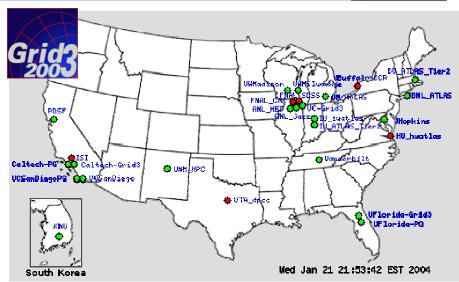
- Pre-Challenge Production in 2003/04 (PCP)
 - *Simulation and digitization of ~70 Million events needed as input for the Data Challenge
 - started in July 2003, Digitization still running
 - ◆ 750K jobs, 3500 KSI2000 months, 700 Kfiles,80 TB of data
 - *Classic and Grid (CMS/LCG-0, LCG-1, Grid3) productions
- ▶ Data Challenge (DC04)
 - *Reconstruction of data for sustained period at 25Hz
 - ***** Data distribution to Tier-1, Tier-2 sites
 - **☀** Data analysis at remote sites
 - **★** Demonstrate the feasibility of the full chain

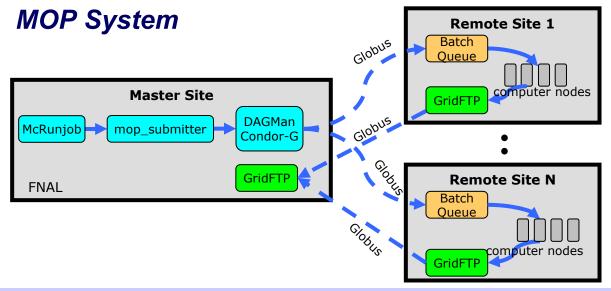
PCP


DC04

Tier-0

Pre-Challenge Production setup

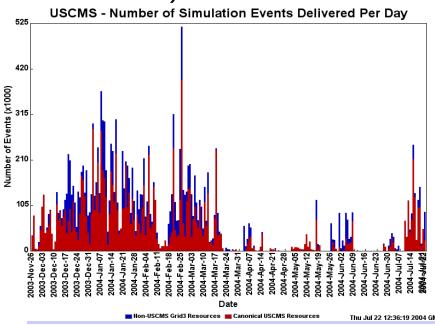


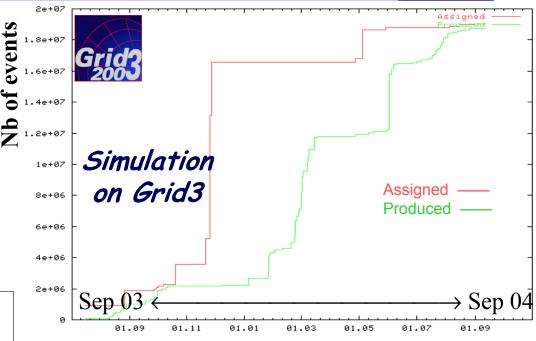

US MOP production system

Running on Grid2003

- * Based on VDT1.1.11
- EDG VOMS for authentication
- GLUE Schema for MDS Information Providers
- MonaLisa for monitoring
- MOP for production control

- * Dagman and Condor-G for specification and submission
- * Condor-based matchmaking process selects resources
- * Results are returned using GridFTP to dCache at FNAL


Production on Grid: Grid3



5

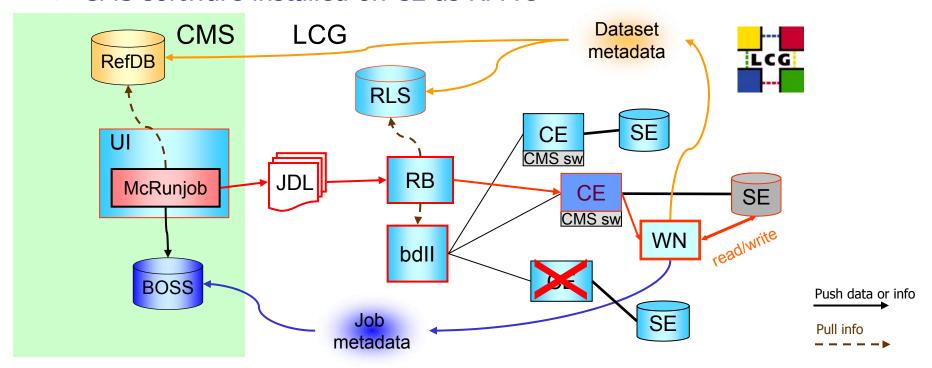
Resources:

- US CMS Canonical resources (Caltech, UCSD, Florida, FNAL)
 - * 500-600 CPUs
- ▶ Grid3 shared resources (~17 sites)
 - * over 2000 CPUs (shared)
 - realistic usage (few hundred to 1000)

USMOP Regional Center Statistics:

- ▶ 7.7 Mevts CMKIN
 - * 30000 jobs ~ 0.7 KSI2000 months
- ▶ 19 Mevts CMSIM+OSCAR
 - * 19000 jobs ~ 1000 KSI2K months
- ▶ 13 TB data

Grid3: results and observations

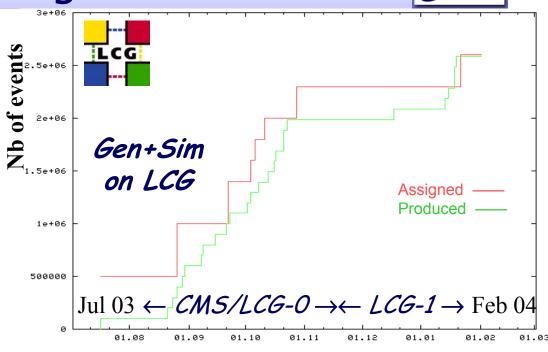

- Massive CMS Official Production on Grid3
 - * ~ 19 Millions of events (19K very long jobs), 13TB data
 - Simultaneous usage of CPU resources peaked at 1200 CPUs, controlled by a single FTE
- Overall Job Efficiency ~ 70%
- Reasons of job failures
 - ★ CMS application bugs ~ few %
 - * No significant failure rate from Grid middleware per se
 - can generate high loads
 - infrastructure relies on shared filesystem
 - Most failures due to "normal" system issues
 - hardware failure
 - NIS, NFS problems
 - disks fill up
 - Reboots
 - Service level monitoring need to be improved
 - a service failure may cause all the jobs submitted to a site to fail
- The use of Grid-based jobs resulted in reducing the overall support effort required to submit and monitor jobs by a factor of two

CMS production interfaced to LCG

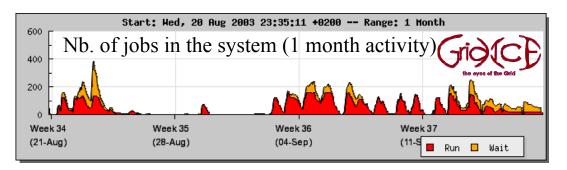
- Production is managed from User Interface
- CMS software installed on CE as RPM's

- Computing resources are matched by the Resource Broker to the job requirements (installed CMS software, MaxCPUTime, etc)
- Output data stored into close SE and registered in RLS

A. Fanfani *INFN Bologna* CHEP04 29 Sept 2004


Production on grid: CMS-LCG

Resources:


About 170 CPU's and 4TB

- ► CMS/LCG-0
 - CMS-wide testbed (~10 sites) based on the LCG pilot distribution (LCG-0) including RLS, VOMS, GLUE schema, GridICE...
- ▶ LCG-1
 - sites of "south testbed" (Italy-Spain)/Gridit

CMS-LCG Regional Center Statistics:

- ▶ 0.5 Mevts "heavy" CMKIN
 - * 2000 jobs ~ 10 KSI2K months
- 2.1 Mevts CMSIM+OSCAR
 - * 8500 jobs ~ 90 KSI2K months
- ~ 2 TB data

LCG: results and observations

- CMS Official Production on early deployed LCG implementations
 - * ~ 2.6 Millions of events (~ 10K long jobs), 2TB data
- Overall Job Efficiency ranging from 70% to 90%
- The failure rate varied depending on the incidence of some problems:
 - RLS unavailability few times, in those periods the job failure rates could increase up to 25-30% → single point of failure
 - Instability due to site mis-configuration, network problems, local scheduler problem, hardware failure with overall inefficiency about 5-10%
 - Few % due to service failures
- Success Rate on LCG-1 was lower wrt CMS/LCG-0 (efficiency ~ 60%)
 - less control on sites, less support for services and sites (also due to Christmas)
 - Major difficulties identified in the distributed sites consistent configuration
- Good efficiencies and stable conditions of the system in comparison with what obtained in previous challenges
 - showing the maturity of the middleware and of the services, provided that a continuous and rapid maintenance is guaranteed by the middleware providers and by the involved site administrators

A. Fanfani *INFN Bologna* CHEP04 29 Sept 2004

LCG-2 in CMS Data Challenge 04

Aspects of DC04 involving LCG-2 components

- register all data and metadata to a world-readable catalogue
 RLS
- * transfer the reconstructed data from Tier-0 to Tier-1 centers
 - ◆ Data transfer between LCG-2 Storage Elements
- * analyze the reconstructed data at the Tier-1's as data arrive
 - ◆ Real-Time Analysis with Resource Broker on LCG-2 sites
- * publicize to the community the data produced at Tier-1's
 - straightforward using the usual Replica Manager tools
- * end-user analysis at the Tier-2's (not really a DC04 milestone)
 - first attempts
- * monitor and archive resource and process information
 - GridICE
- Not a CPU challenge, but a full chain demonstration!
- ▶ Full chain (but the Tier-0 reconstruction) done in LCG-2

Description of CMS/LCG-2 system

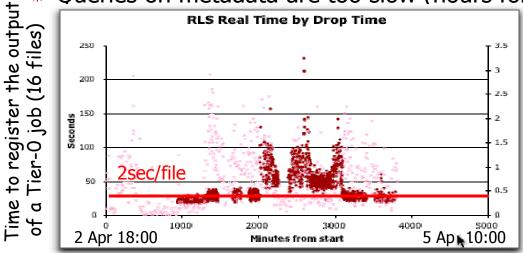
- RLS at CERN with Oracle backend
- Dedicated information index (bdII) at CERN (by LCG)
 - * CMS adds its own resources and removes problematic sites
- Dedicated Resource Broker at CERN (by LCG)
 - * Other RB's available at CNAF and PIC, in future use them in cascade
- Official LCG-2 Virtual Organization tools and services
- Dedicated GridICE monitoring server at CNAF
- Storage Elements
 - ***** Classic disk SE at CERN → Export Buffer
 - ***** Castor SE at CNAF and PIC → import buffer from CERN and interface to MSS
 - ★ Classic disk SE at CNAF, PIC, Legnaro, Ciemat → serve data for analysis
- ▶ Computing Elements at CNAF, PIC, Legnaro, Ciemat
 - * CMS Software installed on CE by the CMS Software Manager via a grid job
 - RPM distribution based on CMSI
- User Interfaces at CNAF, PIC, LNL

A. Fanfani *INFN Bologna* CHEP04 29 Sept 2004 11

RLS usage

- CMS framework uses POOL
- ▶ RLS used as a global POOL catalogue, with full file meta data
 - ***** Global file catalogue (LRC component of RLS: GUID ↔ PFNs)
 - Registration of files location by reconstruction jobs and by all transfer tools
 - Query by the Resource Broker to submit analysis jobs close to the data
 - ***** Global metadata catalogue (RMC component of RLS: GUID ↔ metadata)
 - Meta data schema handled and pushed into RLS catalogue by POOL
 - Query (by users or agents) to find logical collection of files
 - CMS does not use a separate file catalogue for meta data
- ▶ Total Number of files registered in the RLS during DC04:
 - * ~ 570K LFNs each with ~ 5-10 PFN's
 - ★ 9 metadata attributes per file (up to ~1 KB metadata per file)

RLS issues



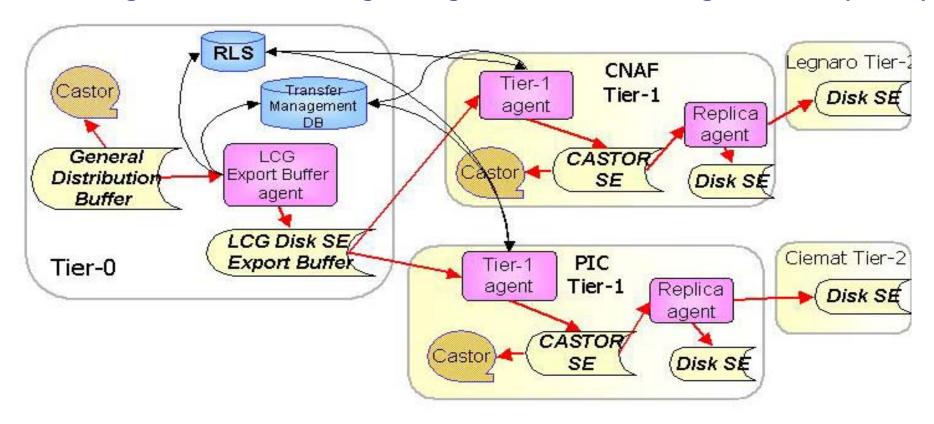
Inserting information into RLS:

- insert PFN (file catalogue) was fast enough if using the appropriate tools, produced in-course
 - LRC C++ API programs (~0.1-0.2sec/file), POOL CLI with GUID (secs/file)
- * insert files with their attributes (file and metadata catalogue) was slow
 - We more or less survived, higher data rates would be troublesome

Querying information from RLS

- * Looking up file information by GUID seems sufficiently fast
- Bulk queries by GUID take a long time (seconds per file)
- Queries on metadata are too slow (hours for a dataset collection)

Sometimes the load on RLS increases and requires intervention on the server (i.g. log partition full, switch of server node, un-optimized queries)


⇒ able to keep up in optimal condition, so and so otherwise

Data Transfer (I)

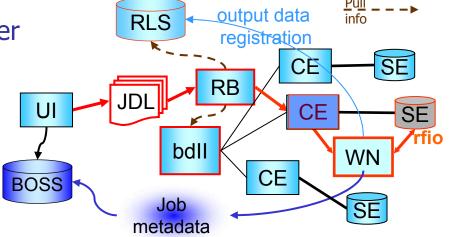
▶ Set of agents communicating through the Transfer Management DB (TMDB)

- *Data upload at Tier-0 in a disk SE Export Buffer and register in RLS
- *Data transfer from Tier-0 to CASTOR SEs at Tier-1
- ***** Data replication from Tier-1 to Tier-2 disk SEs

Data Transfer (II)

Transfer tools:

- * Replica Manager CLI used for EB → CNAF and CNAF → Legnaro
 - Java-based CLI introduces non negligible overhead at start-up
- * globus-url-copy + LRC C++ API used for EB →PIC and PIC → Ciemat
 - Faster
- Performance has been good with both tools
 - * able to keep up with the rate of data coming from the reconstruction at Tier-0
 - * Total network throughput limited by small file size
 - * Some transfer problem caused by performance of underlying MSS (Castor)



Real-time Data Analysis

Push data or info

- Automatic procedures to submit analysis jobs as new data were made available on disk SE at Tier-1 and Tier-2
 - * Main difficulty is to identify complete file sets (i.e. runs)
- ▶ Job submission to LCG-2 Resource Broker
 - * running on LCG-2 sites (Spain and Italy Tier-1/2)
 - *Job sent close to the data
 - **☀**File access via rfio
 - *****Output data registered in RLS
 - ***** Job monitoring with BOSS
- The LCG submission system could cope with the rate of data coming from CERN
 - More than 17000 analysis jobs were submitted in about 2 weeks, with a grid efficiency of 90-95%
 - * During the last days of running an average delay of 20 minutes from data at Tier-0 to their analysis at Tier-1 was measured
- ▶ Real-time analysis sustained running was done only in LCG environment

Conclusions

- CMS distributed production based on grid middleware used within the official CMS production system
 - * Grid3: reliable and scalable system for massive production
 - * LCG: large scale productions proved
 - distributed sites consistent configuration and control is very important
- CMS Data Challenge
 - * LCG environment provides the functionalities for distributed computing
 - The catalogues are an issue!
 - Grid point-to-point file transfer tools
 - Infrastructure for data analysis
 - * LCG data distribution and data analysis chain successfully met the data challenge goals of large scale scheduled distribution to a set of Tier-1/2 and subsequent analysis